Integral predictor based prescribed performance control for multi-motor driving servo systems

Journal of the Franklin Institute(2022)

引用 3|浏览0
暂无评分
摘要
An integral predictor-based dynamic surface control scheme is developed with prescribed performance (IPPDSC) for multi-motor driving servo systems in this paper. By employing a novel finite-time performance function and an improved error transformation, the tracking error is limited within a prescribed zone in any preset time without having the overrun and the singularity problem. Furthermore, integral state predictors are designed to update neural network weights to handle high-frequency oscillations under large adaptive gains. Different from the existing approaches, an integral term of prediction error is introduced to eliminate the steady-state error and avoid chattering. In addition, a synchronization controller based on the mean relative coupling structure is proposed to solve the coupling problem between synchronization and tracking. Finally, simulation and experimental results are presented to demonstrate the effectiveness of the designed approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要