Mitigation of Multi-Organ Radiation Injury with ACE2 Agonist Diminazene Aceturate

RADIATION RESEARCH(2022)

引用 3|浏览5
暂无评分
摘要
The renin-angiotensin system (RAS) is known to regulate the pathogenesis of radiation-induced injury as inhibitors of the RAS enzyme angiotensin converting enzyme (ACE) have established function as mitigators of multi-organ radiation injury. To further elucidate the role of RAS signaling during both the acute and delayed syndromes of radiation exposure, we have evaluated whether pharmacologic modulation of alternate RAS enzyme angiotensin converting enzyme 2 (ACE2) reduces the pathogenesis of multi-organ radiation-induced injuries. Here, we demonstrate pharmacologic ACE2 activation with the small molecule ACE2 agonist diminazene aceturate (DIZE) improves survival in rat models of both hematologic acute radiation syndrome (H-ARS) and multiorgan delayed effects of acute radiation exposure (DEARE). In the H-ARS model, DIZE treatment increased 30-day survival by 30% compared to vehicle control rats after a LD50/30 total-body irradiation (TBI) dose of 7.75 Gy. In the mitigation of DEARE, ACE2 agonism with DIZE increased median survival by 30 days, reduced breathing rate, and reduced blood urea nitrogen (BUN) levels compared to control rats after partial-body irradiation (PBI) of 13.5 Gy. DIZE treatment was observed to have systemic effects which may explain the multi-organ benefits observed including mobilization of hematopoietic progenitors to the circulation and a reduction in plasma TGF-beta levels. These data suggest the ACE2 enzyme plays a critical role in the RAS-mediated pathogenesis of radiation injury and may be a potential therapeutic target for the development of medical countermeasures for acute radiation exposure. (C) 2022 by Radiation Research Society.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要