Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection.

Science Advances(2022)

引用 28|浏览29
暂无评分
摘要
Two-dimensional (2D) infrared photodetectors always suffer from low quantum efficiency (QE) because of the limited atomically thin absorption. Here, we reported 2D black phosphorus (BP)/Bi2O2Se van der Waals (vdW) photodetectors with momentum-matching and band-alignment heterostructures to achieve high QE. The QE was largely improved by optimizing the generation, suppressing the recombination, and improving the collection of photocarriers. Note that momentum-matching BP/Bi2O2Se heterostructures in k-space lead to the highly efficient generation and transition of photocarriers. The recombination process can be largely suppressed by lattice mismatching-immune vdW interfaces. Furthermore, type II BP/Bi2O2Se vdW heterostructures could also assist fast transport and collection of photocarriers. By constructing momentum-matching and band-alignment heterostructures, a record-high QE of 84% at 1.3 micrometers and 76.5% at 2 micrometers have been achieved in BP/Bi2O2Se vdW photodetectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要