ASTROCYTE IMMUNOMETABOLIC REGULATION OF THE GLIOBLASTOMA MICROENVIRONMENT DRIVES TUMOR PATHOGENICITY

BRAIN(2022)

引用 15|浏览22
暂无评分
摘要
Abstract Background Malignant brain tumors are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumors, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumor associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Material and Methods Immunocompetent mice were implanted with murine glioma cell lines and the role of astrocyte in the tumor pathogenicity was analyzed, and further investigated using in-vitro co-cultures. Results Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumor-associated astrocyte translatome, revealed that astrocytes initiate transcriptional programs that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumor-associated macrophages and promotes a pro-tumorigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumor progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumor microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. Conclusion These findings suggest that targeting astrocyte immunometabolic signaling may help treat this uniformly lethal brain tumor.
更多
查看译文
关键词
glioma, cholesterol, astrocytes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要