Multipair Fo?rster Resonance Energy Transfer via Spectrally Resolved Single-Molecule Detection

The journal of physical chemistry. B(2022)

引用 4|浏览0
暂无评分
摘要
Forster resonance energy transfer (FRET) is a powerful tool for studying molecular interactions. Its use for studying interactions involving more than two molecules, however, has been limited by spectral crosstalk among the fluorophores. Here, we report multispectral FRET (msFRET) for imaging multiple pairs of interactions in parallel by spectrally resolving single fluorescent molecules. By using a dual (positional and spectral) channel and wide-field imaging configuration, fluorophores with emission maxima as close as 6-10 nm could be reliably distinguished. We demonstrate msFRET by continuously monitoring the hybridization dynamics among 2 x 2 pairs of DNA oligos in parallel using Cy3 and Cy3.5 as donors and Cy5 and Cy5.5 as acceptors. Aside from studying molecular interactions, msFRET may also find applications in probing fluorophore photophysics during FRET and in multiplexed superresolution imaging.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要