Amyloid Properties of the FXR1 Protein Are Conserved in Evolution of Vertebrates

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 3|浏览2
暂无评分
摘要
Functional amyloids are fibrillary proteins with a cross-beta structure that play a structural or regulatory role in pro- and eukaryotes. Previously, we have demonstrated that the RNA-binding FXR1 protein functions in an amyloid form in the rat brain. This RNA-binding protein plays an important role in the regulation of long-term memory, emotions, and cancer. Here, we evaluate the amyloid properties of FXR1 in organisms representing various classes of vertebrates. We show the colocalization of FXR1 with amyloid-specific dyes in the neurons of amphibians, reptiles, and birds. Moreover, FXR1, as with other amyloids, forms detergent-resistant insoluble aggregates in all studied animals. The FXR1 protein isolated by immunoprecipitation from the brains of different vertebrate species forms fibrils, which show yellow-green birefringence after staining with Congo red. Our data indicate that in the evolution of vertebrates, FXR1 acquired amyloid properties at least 365 million years ago. Based on the obtained data, we discuss the possible role of FXR1 amyloid fibrils in the regulation of vital processes in the brain of vertebrates.
更多
查看译文
关键词
functional amyloid, FXR1 protein, brain, evolution, vertebrates, fish, amphibians, reptiles, birds, mammals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要