Ionic Conductive and Highly-Stable Interface for Alkali Metal Anodes

SMALL(2022)

引用 9|浏览6
暂无评分
摘要
Alkali metals are regarded as the most promising candidates for advanced anode for the next-generation batteries due to their high specific capacity, low electrochemical potential, and lightweight. However, critical problems of the alkali metal anodes, especially dendrite formation and interface stabilization, remain challenging to overcome. The solid electrolyte interphase (SEI) is a key factor affecting Li and Na deposition behavior and electrochemical performances. Herein, a facile and universal approach is successfully developed to fabricate ionic conductive interfaces for Li and Na metal anodes by modified atomic layer deposition (ALD). In this process, the Li metal (or Na metal) plays the role of Li (or Na) source without any additional Li (or Na) precursor during ALD. Moreover, the key questions about the influence of ALD deposition temperature on the compositions and structure of the coatings are addressed. The optimized ionic conductive coatings have significantly improved the electrochemical performances. In addition, the electrochemical phase-field model is performed to prove that the ionic conductive coating is very effective in promoting uniform electrodeposition. This approach is universal and can be potentially applied to other different metal anodes. At the same time, it can be extended to other types of coatings or other deposition techniques.
更多
查看译文
关键词
alkali metal anodes, atomic layer deposition, interface engineering, next generation batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要