Development of Cationic Benzimidazole-Containing UiO-66 through Step-by-Step Linker Modification to Enhance the Initial Sorption Rate and Sorption Capacities for Heavy Metal Oxo-Anions

INORGANIC CHEMISTRY(2022)

引用 0|浏览7
暂无评分
摘要
Effective and rapid capture of heavy metal oxo-anions from wastewater is a fascinating research topic, but it remains a great challenge. Herein, benzimidazole and -CH3 groups were integrated into UiO-66 in succession via a step-by-step linker modification strategy that was performed by presynthesis modification (to give Bim-UiO-66) and subsequently by postsynthetic ionization (to give Bim-UiO-66-Me). The UiO-66s (UiO-66, Bim-UiO-66, and Bim-UiO-66-Me) were applied in the removal of heavy metal oxo-anions from water. The two benzimidazole derivatives (Bim-UiO-66 and Bim-UiO-66-Me) showed much better performance than UiO-66, as both the initial sorption rate and sorption capacities decreased in the order Bim-UiO-66-Me > Bim-UiO-66 > UiO-66. The maximum performances of Bim-UiO-66 are 5.1 and 1.7 times those of UiO-66. Remarkably, Bim-UiO-66-Me shows 7.5 and 3.0 times better performance than UiO-66. The higher absorptivity of cationic Bim-UiO-66-Me compared with UiO-66 can be attributed to a strong Coulombic interaction as well as an anion-pi interaction and hydrogen bonding between the benzimidazolium functional group and heavy metal oxo-anions. The as-synthesized Bim-UiO-66-Me not only provides a promising candidate for application in removal of heavy metal oxo-anions in wastewater treatment but also opens up a new strategy for the design of high-performance adsorbents.
更多
查看译文
关键词
sorption capacities,initial sorption rate,benzimidazole-containing,step-by-step,oxo-anions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要