Low abundance of mitophagy markers is associated with reactive oxygen species overproduction in cows with fatty liver and causes reactive oxygen species overproduction and lipid accumulation in calf hepatocytes

Journal of Dairy Science(2022)

引用 2|浏览16
暂无评分
摘要
Mitochondria are the main site of fatty acid oxidation and reactive oxygen species (ROS) formation. Damaged or dysfunctional mitochondria induce oxidative stress and increase the risk of lipid accumulation. During the process of mitophagy, PTEN induced kinase 1 (PINK1) accumulates on damaged mitochondria and recruits cytoplasmic Parkin to mitochondria. As an autophagy receptor protein, sequestosome-1 (p62) binds Parkin-ubiquitinated outer mitochondrial membrane proteins and microtubule-associated protein 1 light chain 3 (LC3) to facilitate degradation of damaged mitochondria. In nonruminants, clearance of dysfunctional mitochondria through the PINK1/Parkin-mediated mitophagy pathway contributes to reducing ROS production and maintaining metabolic homeostasis. Whether PINK1/Parkin-mediated mitophagy plays a similar role in dairy cow liver is not well known. Thus, the objective of this study was to investigate mitophagy status in dairy cows with fatty liver and its role in free fatty acid (FFA)-induced oxidative stress and lipid accumulation. Liver and blood samples were collected from healthy dairy cows (n = 10) and cows with fatty liver (n = 10) that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Calf hepatocytes were isolated from 5 healthy newborn female Holstein calves (1 d of age, 30–40 kg). Hepatocytes were transfected with small interfering RNA targeted against PRKN for 48 h or transfected with PRKN overexpression plasmid for 36 h, followed by treatment with FFA (0.3 or 1.2 mM) for 12 h. Mitochondria were isolated from fresh liver tissue or calf hepatocytes. Serum concentrations of β-hydroxybutyrate were higher in dairy cows with fatty liver. Hepatic malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in cows with fatty liver. The lower protein abundance of PINK1, Parkin, p62, and LC3-II in hepatic mitochondrial fraction of dairy cows with fatty liver indicated the mitophagy was impaired. In hepatocytes, knockdown of PRKN decreased protein abundance of p62 and LC3-II in the mitochondrial fraction, and increased contents of triacylglycerol (TG), MDA, and H2O2. In addition, protein abundances of PINK1, Parkin, p62, and LC3-II were lower in the mitochondrial fraction from hepatocytes treated with 1.2 mM FFA than the hepatocytes treated with 0.3 mM FFA, whereas the content of TG, MDA, and H2O2 increased. In 1.2 mM FFA-treated hepatocytes, PRKN overexpression increased protein abundance of p62 and LC3-II in the mitochondrial fraction and decreased contents of TG, MDA, and H2O2. Together, our data demonstrate that low abundance of mitophagy markers is associated with ROS overproduction in dairy cows with fatty liver and impaired mitophagy induced by a high concentration of FFA promotes ROS production and lipid accumulation in female calf hepatocytes.
更多
查看译文
关键词
autophagy,hepatocyte,mitochondria,transition period,ROS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要