Accurate Prediction of Hall Mobilities in Two-Dimensional Materials through Gauge-Covariant Quadrupolar Contributions

PHYSICAL REVIEW LETTERS(2023)

引用 4|浏览5
暂无评分
摘要
Despite considerable efforts, accurate computations of electron-phonon and carrier transport properties of low-dimensional materials from first principles have remained elusive. By building on recent advances in the description of long-range electrostatics, we develop a general approach to the calculation of electronphonon couplings in two-dimensional materials. We show that the nonanalytic behavior of the electronphonon matrix elements depends on the Wannier gauge, but that a missing Berry connection restores invariance to quadrupolar order. We showcase these contributions in a MoS2 monolayer, calculating intrinsic drift and Hall mobilities with precise Wannier interpolations. We also find that the contributions of dynamical quadrupoles to the scattering potential are essential, and that their neglect leads to errors of 23% and 76% in the room-temperature electron and hole Hall mobilities, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要