The theory of transport in helical spin-structure crystals.

Journal of physics. Condensed matter : an Institute of Physics journal(2022)

引用 2|浏览2
暂无评分
摘要
We study helical structures in spin-spiral single crystals. In the continuum approach for the helicity potential energy the simple electronic band splits into two non-parabolic bands. For low exchange integrals, the lower band is described by a surface with a saddle shape in the direction of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons, we discover the dependence of the current on the angle between the electric field and helicity axis leading to the both parallel and perpendicular to the electric field components in the electroconductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the transition rates depend on an electron spin allowing the transition between the bands. The electric conductivities exhibit nonlinear behaviors with respect to chemical potential. We explain this effect as the interference of the band anisotropy, spin conservation, and interband transitions. The proposed theory with the spherical model in the effective mass approximation for conduction electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the excellent agreement between the theoretical and experimental data for parallel resistivity depending on temperature at the phase transition from helical to ferromagnetic state in aMnPsingle crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the ferromagnetic phase.
更多
查看译文
关键词
Boltzmann,spin,transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要