Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage

Life Sciences(2020)

引用 0|浏览0
暂无评分
摘要
Aim Apoptosis of endothelial cells (ECs) is a crucial factor in blood-spinal cord barrier (BSCB) disruption post spinal cord injury (SCI). Insulin-like growth factor-1 (IGF-1) is a protective cytokine that plays an important role in multiple diseases, whereas the distinct role in SCI-induced remains critical questions to address. Here we designed to explore the role and underlying mechanism of IGF-1 in endothelial damage after SCI. Main methods In the current study, we established mouse microvascular endothelial cells (MVECs) injury model via LPS and cDNA of IGF-1 was transfected into MVECs. In vivo SCI mice, overexpression of IGF-1 (SCI-IGF-1) and its corresponding empty vehicle (SCI-NC) were conducted using lentivirus, then apoptosis degree, component of tight junction, and inflammatory damage were evaluated. Key findings IGF-1 treatment in MVECs displayed a milder apoptosis and cell damage under LPS insult. IGF-1 increased the level of PI3K/AKT pathway, which impeded the procedure of apoptosis. Blocking of PI3K/AKT pathway markedly neutralized the effect of IGF-1 treatment. Transfection of excess IGF-1 into SCI mice significantly corrected microenvironment of neural tissue repair, reduced area of injured core and improved functional recovery with greater activation of PI3K/AKT pathway. Significance The results above argue that the promising roles played by IGF-1 is potentially vital for developing effective future therapies in SCI.
更多
查看译文
关键词
Insulin-like growth factor-1,Spinal cord injury,Endothelial apoptosis,PI3K/AKT pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要