Improved Parent Material Map Disaggregation Methods in the Saskatchewan Prairies Using Historical Bare Soil Composite Imagery

Canadian Journal of Soil Science(2022)

引用 1|浏览2
暂无评分
摘要
The major drivers of soil variation in Saskatchewan at scales finer than the existing soil maps are parent material variance, slope position, and salinity. There is therefore a need to generate finer-scale parent material maps as part of updating soil maps in Saskatchewan. As spatially referenced soil point data are lacking in Saskatchewan, predictive soil mapping methods that disaggregate existing soil parent material maps are required. This study focused on investigating important environmental covariates to use in parent material disaggregation; particularly bare soil composite imagery. Synthetic point observations were generated using an area-proportional approach based on existing soil survey polygons and a random forest model was trained with those synthetic observations to predict parent material classes. Including bare soil composite imagery as environmental covariates increased model accuracy from 0.38 to 0.52 and the model Kappa score from 0.19 to 0.35 compared with models where it was not included. Models that included training points from all locations, regardless of whether bare soil composite imagery was available, and included bare soil composite imagery as environmental covariates had similar results to the bare soil composite imagery model with an accuracy of 0.48 and a Kappa value of 0.30. Based on these results, bare soil composite imagery is an important covariate for parent material disaggregation in the Saskatchewan Prairies. Future work to disaggregate soil classes based on slope position and salinity, and to combine those methods with parent material disaggregation is needed to generate detailed soil maps for the Canadian Prairies.
更多
查看译文
关键词
predictive soil mapping,bare soil composite,soil map dissaggregation,remote sensing,soil parent material
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要