Compact hardware accelerator for field multipliers suitable for use in ultra-low power IoT edge devices

Alexandria Engineering Journal(2022)

引用 2|浏览1
暂无评分
摘要
Adoption of IoT technology without considering its security implications may expose network systems to a variety of security breaches. In network systems, IoT edge devices are a major source of security risks. Implementing cryptographic algorithms on most IoT edge devices can be difficult due to their limited resources. As a result, compact implementations of these algorithms on these devices are required. Because the field multiplication operation is at the heart of most cryptographic algorithms, its implementation will have a significant impact on the entire cryptographic algorithm implementation. As a result, in this paper, we propose a small hardware accelerator for performing field multiplication on edge devices. The hardware accelerator is primarily composed of a processor array with a regular structure and local interconnection among its processing elements. The main advantage of the proposed hardware structure is the ability to manage its area, delay, and consumed energy by choosing the appropriate word size l. We implemented the proposed structure using ASIC technology and the obtained results attain average savings in the area of 95.9%. Also, we obtained significant average savings in energy of 63.2%. The acquired results reveal that the offered hardware accelerator is appropriate for usage in resource-constrained IoT edge devices.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Finite field multiplication, IoT security, Cryptography, IoT-edge devices, Parallel processing, Processor array
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要