Dynamic Sealing Behavior of Sand Self-Juxtaposition Windows on a Trap-Bounding Fault in a Natural Gas Storage Site

Lithosphere(2022)

引用 1|浏览2
暂无评分
摘要
Abstract An understanding of across-fault seals is essential for planning an injection/production strategy for a fault-bounded gas storage site. In addition, it is more likely to permit lateral leakage for a fault with sand self-juxtaposition windows. This paper is aimed at identifying the dynamic sealing behaviors of a sand self-juxtaposition fault on the geological and gas injection timescales. Banzhongbei gas storage site, China, was taken as a target area, and fault seals and hydrocarbon distributions within the original reservoirs were studied. The results showed that across-fault pressure differences of 0.085~0.146 MPa (equivalent to 41.6~71.5 m oil-column and 27.0~46.4 m gas-column heights) were supported by sand self-juxtaposition windows on the B816 fault, and the resultant absolute permeability (5.97×10−2~5.69×10−1 mD) of the fault was nearly 3~4 orders of magnitude lower than the average absolute permeability of reservoirs (1.16×102 mD). Gas composition contrasts, between the original and injection gas coupled with dynamic pressure monitoring data, indicated that lateral leakage occurred across sand self-juxtaposition windows under the condition of high across-fault pressure difference. However, the low-permeability fault showed strong negative influence on the efficiency of fluid flow in the model calculations and prolongs the timescales of pressure-difference decayed as much as 5 orders of magnitude relative to those of nonfault model calculations. These modeled dynamic sealing behaviors of sand self-juxtaposition windows may lead to a better understanding of the relative retardation of across-fault gas flow by weak sealing faults on the gas injection/production timescale.
更多
查看译文
关键词
dynamic sealing behavior,natural gas storage site,sand,self-juxtaposition,trap-bounding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要