Exposure to heat stress causes downregulation of immune response genes and weakens the disease resistance of Micropterus salmoides.

Comparative biochemistry and physiology. Part D, Genomics & proteomics(2022)

引用 5|浏览11
暂无评分
摘要
In order to understand the molecular mechanism of response to heat stress in largemouth bass (LMB) Micropterus salmoides, we performed transcriptome analysis of spleen tissue of LMB subjected to heat stress and challenged with A. veronii under heat stress. A total of 2162 DEGs were identified between the heat stressed (32 °C) and control groups (24 °C) after 7 d treatment. Gene Ontology (GO) annotation analysis revealed that these differentially expressed genes (DEGs) were mainly enriched on GO terms of biological regulation, membrane part, and binding. ELISA validation indicated that except major histocompatibility complex II (Mhc II), the protein levels of t-Sod, caspase 3 (Casp3), tumor necrosis factor-α (Tnf-α), and complement component 3 (C3) were consistent with RNA-seq results. In the experiment of A. veronii challenged under heat stress (32 °C), 2899 and 2663 DEGs were obtained from the heat stress-challenged group (H6 vs H0, H12 vs H0), while 1485 and 3501 DEGs from the control-challenged group (C6 vs C0, C12 vs C0). GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that immune-related categories and pathways were significantly enriched, such as immune system process, immune response and positive regulation of immune response in GO enrichment analysis, and cytokine-cytokine receptor interaction, human cytomegalovirus infection in KEGG signaling pathways. The expressions of f11, c1q and c3 in complement and coagulation pathway, as well as that of proinflammatory genes tnf-α and il-8, were deeply inhibited. Real-time quantitative PCR validation for nine DEGs showed that most of them had consistent expression trends with RNA-seq results. Our results indicated that heat stress affects the immunity and metabolism of LMB. In particular, it aggravates the inhibitory effects of A. veronii on the complement and coagulation systems while downregulating proinflammatory cytokine expression, thereby weakening the resistance of LMB to pathogen infection. Our results contribute to the elucidation of A. veronii infection pathogenic mechanisms in LMB under heat stress.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要