Improved and Highly Efficient Agrobacterium rhizogenes-Mediated Genetic Transformation Protocol: Efficient Tools for Functional Analysis of Root-Specific Resistance Genes for Solanum lycopersicum cv. Micro-Tom

SUSTAINABILITY(2022)

引用 1|浏览2
暂无评分
摘要
Gene function analysis, molecular breeding, and the introduction of new traits in crop plants all require the development of a high-performance genetic transformation system. In numerous crops, including tomatoes, Agrobacterium-mediated genetic transformation is the preferred method. As one of our ongoing research efforts, we are in the process of mapping a broad-spectrum nematode resistance gene (Me1) in pepper. We work to transform tomato plants with candidate genes to confer resistance to nematodes in Solanaceae members. The transformation technology development is designed to produce a reproducible, rapid, and highly effective Agrobacterium-mediated genetic transformation system of Micro-Tom. In our system, a transformation efficiency of over 90% was achieved. The entire procedure, starting from the germination of seeds to the establishment of transformed plants in soil, was completed in 53 days. We confirmed the presence of the NeoR/KanR and DsRed genes in the transformed roots by polymerase chain reaction. The hairy root plants were infected with nematodes, and after 3 months, the presence of DsRed and NeoR/KanR genes was detected in the transformant roots to confirm the long-term effectiveness of the method. The presented study may facilitate root-related research and exploration of root-pathogen interactions.
更多
查看译文
关键词
Agrobacterium-mediated transformation, functional genomics, Solanum lycopersicum L, Micro-Tom, DsRed fluorescence, Agrobacterium rhizogenes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要