Nonadiabatic strong field ionization of noble gas atoms in elliptically polarized laser pulses

OPTICS EXPRESS(2022)

引用 7|浏览6
暂无评分
摘要
We present theoretically obtained photoelectron momentum distributions (PMDs) for the strong field ionization of argon in an elliptically polarized laser field at a central wavelength of 400 nm. Three different theoretical approaches, namely, a numerical solution of the time-dependent Schrodinger equation (TDSE), a nonadiabatic model, and a classical-trajectory Monte Carlo (CTMC) model are adopted in our calculations. From the TDSE calculations, it is found that the attoclock offset angle (most probable electron emission angles with respect to the minor axis of the laser's polarization ellipse) in the PMD increases with rising ATI order. While this result cannot be reproduced by the CTMC model, the nonadiabatic model achieves good agreement with the TDSE result. Analysis shows that the nonadiabatic corrections of the photoelectron initial momentum distribution (in both longitudinal and transverse directions with respect to the tunneling direction) and nonadiabatic correction of the tunneling exit are responsible for the ATI order-dependent angular shift. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要