Theoretical research on suppression ratio of dynamic gas lock for extreme ultraviolet lithography contamination control

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2022)

引用 1|浏览4
暂无评分
摘要
Dynamic gas lock (DGL) is an important technology for contamination control of extreme ultraviolet (EUV) lithography. DGL prevents contamination diffusion from the dirty compartment into the clean one and allows passage of EUV light between compartments. A number of DGL structures have been proposed for EUV scanners. The suppression ratio is the key index of DGL, but there are few theoretical studies on it. Using the Peclet number to represent the suppression ratio just ignores the variable cross section of DGL and the effect of the total mass flow. A new suppression ratio formula is derived here based on the convection-diffusion equation, including the constant and variable cross section of DGL. In order to verify the theoretical calculation, an experiment is carried out on a self-developed DGL device, obtaining the gas flow utilization and suppression ratio of various mass flows. The results show that the suppression ratio increases exponentially with mass flow, which is consistent with the theoretical expectation. At the same time, the important influence of the convection segment has also been demonstrated. It is concluded that the theoretical approach can well predict the suppression ratio and provide structural design guidance for DGL, which has an important practical application value. Published under an exclusive license by the AVS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要