Long-range transport and ultrafast interfacial charge transfer in perovskite/monolayer semiconductor heterostructure for enhanced light absorption and photocarrier lifetime

JOURNAL OF CHEMICAL PHYSICS(2022)

引用 11|浏览25
暂无评分
摘要
Atomically thin two-dimensional transition metal dichalcogenides (TMDs) have shown great potential for optoelectronic applications, including photodetectors, phototransistors, and spintronic devices. However, the applications of TMD-based optoelectronic devices are severely restricted by their weak light absorption and short exciton lifetime due to their atomically thin nature and strong excitonic effect. To simultaneously enhance the light absorption and photocarrier lifetime of monolayer semiconductors, here, we report 3D/2D perovskite/TMD type II heterostructures by coupling solution processed highly smooth and ligand free CsPbBr3 film with MoS2 and WS2 monolayers. By time-resolved spectroscopy, we show interfacial hole transfer from MoS2 (WS2) to the perovskite layer occurs in an ultrafast time scale (100 and 350 fs) and interfacial electron transfer from ultrathin CsPbBr3 to MoS2 (WS2) in ~3 (9) ps, forming a long-lived charge separation with a lifetime of > 20 ns. With increasing CsPbBr3 thickness, the electron transfer rate from CsPbBr3 to TMD is slower, but the efficiency remains to be near-unity due to coupled long-range diffusion and ultrafast interfacial electron transfer. This study indicates that coupling solution processed lead halide perovskites with strong light absorption and long carrier diffusion length to monolayer semiconductors to form a type II heterostructure is a promising strategy to simultaneously enhance the light harvesting capability and photocarrier lifetime of monolayer semiconductors. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要