Biomedical applications of multifunctional magnetoelectric nanoparticles

MATERIALS CHEMISTRY FRONTIERS(2022)

引用 7|浏览11
暂无评分
摘要
Advances in nanotechnology are impacting biomedicine with the potential to improve disease diagnosis, enhance targeted drug delivery, refine imaging of therapeutic responses, control cell and tissue responses, and guide resection. An emerging class of nanomaterials with unique properties for biomedical applications are magnetoelectric nanoparticles (MENPs). Because of their electro-magnetic coupling properties, MENPs can be manipulated in the body by applying magnetic field gradients to produce local electrical fields for various biomedical applications from controlled drug release to cellular stimulation. Conversely, because they display a quantum mechanically induced nonzero magnetoelectric (ME) effect, electrical fields can also be produced with localized magnetic fields to achieve different signals for bioimaging or biosensing. Here we review MENPs, their synthesis and characterization, as well as their applications in drug delivery, neural stimulation, bio-imaging, bio-sensing, diagnostics and theranostics.
更多
查看译文
关键词
multifunctional magnetoelectric nanoparticles,biomedical applications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要