Synthesis of β-Bi2O3 nanoparticles via the oxidation of Bi nanoparticles: Size, shape and polymorph control, anisotropic thermal expansion, and visible-light photocatalytic activity

Ceramics International(2022)

引用 8|浏览6
暂无评分
摘要
Bismuth trioxide (Bi2O3) is known for its simple composition but rich polymorphism that allows a number of phase-dependent physicochemical properties and technical applications. We here report our controllable synthesis of highly discrete β-Bi2O3 (tetragonal) nanoparticles (NPs) via the thermal oxidation of nearly-monodisperse Bi NPs. The size and shape (spherical and tear- or rod-like) of β-Bi2O3 NPs are tunable by the size of parent Bi NPs whereas β and α (monoclinic) polymorphs can be selectively achieved by tailoring the oxidation temperature. The phase stability of β polymorph from room temperature to 450 °C enables us to perform an in situ high-temperature XRD study on the temperature dependence of its lattice parameters, which reveals a marked thermal expansion anisotropy in β-Bi2O3 with a linear thermal expansion coefficient of +35.1 × 10−6 °C−1 in the c axis, fifteen times higher than that in the a axis. Meanwhile, the narrow band gap (2.27 eV for β vs. 2.77 eV for α) and strong visible-light absorption endow β-Bi2O3 NPs with a good photocatalytic activity for the visible-light Rhodamine B dye degradation. We expect that our work could be a valuable reference for the studies on the size, shape and polymorph control, thermal property, and photocatalytic application of Bi2O3.
更多
查看译文
关键词
Bismuth oxide,Polymorphs,Thermal expansion,Photocatalysis,Oxidation conversion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要