Individually addressable and flexible pressure sensor matrixes with ZnO nanotube arrays on graphene

NPG ASIA MATERIALS(2022)

引用 13|浏览8
暂无评分
摘要
We report the fabrication of individually addressable, high-density, vertical zinc oxide (ZnO) nanotube pressure sensor arrays. High-sensitivity and flexible piezoelectric sensors were fabricated using dimension- and position-controlled, vertical, and free-standing ZnO nanotubes on a graphene substrate. Significant pressure/force responses were achieved from small devices composed of only single, 3 × 3, 5 × 5, and 250 × 250 ZnO nanotube arrays on graphene. An individually addressable pixel matrix was fabricated by arranging the top and bottom electrodes of the sensors in a crossbar configuration. We investigated the uniformity and robustness of pressure/force spatial mapping by considering the pixel size, the number of ZnO nanotubes in each pixel, and the lateral dimensions of individual ZnO nanotubes. A spatial resolution as high as 1058 dpi was achieved for a Schottky diode-based force/pressure sensor composed of ZnO nanotubes on a flexible substrate. Additionally, we confirmed the excellent flexibility and electrical robustness of the free-standing sensor arrays for high-resolution tactile imaging. We believe that this work opens important opportunities for 1D piezoelectric pressure/force sensor arrays with enormous applications in human-electronics interfaces, smart skin, and micro- and nanoelectromechanical systems.
更多
查看译文
关键词
Electronic devices,Sensors and biosensors,Materials Science,general,Biomaterials,Optical and Electronic Materials,Structural Materials,Energy Systems,Surface and Interface Science,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要