Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox

NATURE MATERIALS(2022)

引用 21|浏览10
暂无评分
摘要
Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 involves a long-lived intermediate Ni3+/4+ species, which can fully evolve to Ni2+ during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni3+/4+ species goes through a dynamic LMCT process (Ni3+/4+-O2- -> Ni2+-On-). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic-anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT. Understanding reversible anionic redox reactions is key to designing high-energy-density cathodes for lithium-ion batteries. Anionic redox activation in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 is shown to involve intermediate Ni3+/4+ species that can evolve to Ni2+ during relaxation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要