A Novel High-Performance TiO2-x/TiO1-yNy Coating Material for Silicon Anode in Lithium-Ion Batteries

SMALL METHODS(2022)

引用 8|浏览9
暂无评分
摘要
Protective surface coatings on Si anodes are promising for improving the electrochemical performance of lithium-ion batteries (LIBs). Nevertheless, most coating materials have severe issues, including low initial coulombic efficiency, structural fracture, morphology control, and complicated synthetic processing. In this study, a multifunctional TiO2-x/TiO1-yNy (TTN) formed via a facile and scalable synthetic process is applied as a coating material for Si anodes. A thin layer of amorphous TiO2 is uniformly coated onto Si nanoparticles by a simple sol-gel method and then converted into a two phase TiO2-x/TiO1-yNy via nitridation. The lithiated TiO2-x provides high ionic and electrical conductivity, while TiO1-yNy can improve mechanical strength that alleviates volume change of Si to address capacity fading issue. Owing to these synergetic advantages, TiO2-x/TiO1-yNy-coated Si (Si@TTN) exhibits excellent electrochemical properties, including a high charge capacity of 1650 mA h g(-1) at 0.1 A g(-1) and 84% capacity retention after 100 cycles at 1 A g(-1). Moreover, a significantly enhanced rate performance can be achieved at a high current density. This investigation presents a facile and effective coating material to use as the high-capacity silicon anode in the emerging Si anode technology in LIBs.
更多
查看译文
关键词
anodes, coating, lithium-ion batteries, silicon nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要