Experimental evaluation of heat transfer effect on turbocompressor performance operating with helium-neon gas mixtures

EPJ Techniques and Instrumentation(2022)

引用 0|浏览0
暂无评分
摘要
Within the framework of the Future Circular Collider (FCC) currently being investigated at CERN, the entire cryogenic cycle had to be revised with respect to the existing Large Hadron Collider (LHC). In particular, a novel pre-cooling cycle had to be developed for this purpose. This led to a closed-loop cryogenic cycle operating with a mixture of helium and neon, also called Nelium. To better understand the challenges and opportunities associated with the design and operation of radial compressors with such light gases, a closed loop test facility has been designed, built and commissioned at the ITSM (University of Stuttgart). The test facility has been developed to operate with air as well as with helium-neon gas mixtures of varying mixing ratios ranging from pure neon to pure helium. In this paper, the test facility architecture and operation procedure are briefly introduced together with a description of the newly installed compressor stage. Experimental performance measurements are then compared to adiabatic and diabatic numerical simulation validating respectively the pressure rise and diabatic stage efficiency for various gases. The heat transfer effect on compressor stage performance is then described and the respective contribution of the influencing factors are quantified.
更多
查看译文
关键词
Turbocompressor,Light gases,Diabatic compression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要