Miniature coiled artificial muscle for wireless soft medical devices

SCIENCE ADVANCES(2022)

引用 19|浏览12
暂无评分
摘要
Wireless small-scale soft-bodied devices are capable of precise operation inside confined internal spaces, enabling various minimally invasive medical applications. However, such potential is constrained by the small output force and low work capacity of the current miniature soft actuators. To address this challenge, we report a small-scale soft actuator that harnesses the synergetic interactions between the coiled artificial muscle and radio frequency-magnetic heating. This wirelessly controlled actuator exhibits a large output force (similar to 3.1 N) and high work capacity (3.5 J/g). Combining this actuator with different mechanical designs, its tensile and torsional behaviors can be engineered into different functional devices, such as a suture device, a pair of scissors, a driller, and a clamper. In addition, by assuming a spatially varying magnetization profile, a multilinked coiled muscle can have both magnetic field-induced bending and high contractile force. Such an approach could be used in various future untethered miniature medical devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要