Seasonal Changes in Urban PM2.5 Hotspots and Sources from Low-Cost Sensors

ATMOSPHERE(2022)

引用 3|浏览0
暂无评分
摘要
PM2.5 concentrations in urban areas are highly variable, both spatially and seasonally. To assess these patterns and the underlying sources, we conducted PM 2.5 exposure measurements at the adult breath level (1.6 m) along three -5 km routes in urban districts of Mainz (Germany) using portable low-cost Alphasense OPC-N3 sensors. The survey took place on five consecutive days including four runs each day (38 in total) in September 2020 and March 2021. While the betweensensor accuracy was tested to be good (R-2 = 0.98), the recorded PM2.5 values underestimated the official measurement station data by up to 25 mu g/m(3). The collected data showed no consistent PM2.5 hotspots between September and March. Whereas during the fall, the pedestrian and park areas appeared as hotspots in >60% of the runs, construction sites and a bridge with high traffic intensity stuck out in spring. We considered PM2.5/PM10 ratios to assign anthropogenic emission sources with high apportionment of PM2.5 in PM10 (>0.6), except for the parks (0.24) where fine particles likely originated from unpaved surfaces. The spatial PM 2.5 apportionment in PM10 increased from September (0.56) to March (0.76) because of a pronounced cooler thermal inversion accumulating fine particles near ground. Our results showed that highly resolved low-cost measurements can help to identify PM2.5 hotspots and be used to differentiate types of particle sources via PM2.5/PM10 ratios.
更多
查看译文
关键词
OPC-N3, particulate matter, personal exposure, mobile measurement, PM2.5/PM10 ratio
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要