Microstructure, Inclusions, and Elemental Distribution of a Compacted Graphite Iron Alloyed by Ce and La Rare Earth (RE) Elements

METALS(2022)

引用 0|浏览3
暂无评分
摘要
This work investigates the microstructure and inclusions of a compacted graphite iron (CGI) alloyed by Ce and La rare earth (RE) elements. In our study, alloying elemental distribution and solute segregation were characterized by methods of secondary ion mass spectrometry (SIMS) and a three-dimensional atom probe (3DAP) with high sensitivity and spatial resolution. RE sulfide, MgS, carbide, and composite inclusions formed during solidification and provided heterogeneous nucleation cores for the nucleation of the graphite. Significant solute clustering in the matrix, coupled with the segregation of solute to grain boundaries, was observed. C, Mn, Cr, and V were soluted in cementite and promoted the precipitation of cementite, while Si was found to be soluted in ferrite. Cu is usually distributed uniformly in ferrite, but some Cu-rich atom clusters were observed to segregate towards the interface between the ferrite and cementite, stabilizing the pearlite. In addition, P, as a segregation element, was enriched along the boundaries continuously. The RE elements participated in the formation of inclusions, consuming harmful elements such as As and P, and also promoted the heterogeneous nucleation of the graphite and segregated, in the form of solute atoms, at its interfaces.
更多
查看译文
关键词
compacted graphite iron, rare earth element, elemental distribution, inclusion, secondary ion mass spectrometry, three-dimensional atom probe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要