Instability of separated shear layer around levitated freestream-aligned circular cylinder

PHYSICS OF FLUIDS(2022)

引用 7|浏览1
暂无评分
摘要
In the present study, characteristics of a shear layer around a freestream-aligned circular cylinder and the relationship between the shear layer motion and the aerodynamic force were investigated under supportless condition. A 0.3-m magnetic suspension and balance system was employed, and experiments were conducted without a mechanical supporting device. Velocity fields were measured using particle image velocimetry with a sufficient temporal and spatial resolution, and high-frequency velocity fluctuations caused by small Kelvin-Helmholtz (KH) vortices were captured. The power spectral densities of velocity fluctuations represent phenomena such as KH vortex convection, vortex pairing, and convection of multiple vortices. Furthermore, fluctuations of the shear layer position were investigated. The results illustrate that the dominant frequency of the shear layer position is lower than the frequency of the velocity, and it shows good agreement with the characteristic frequency of lift force fluctuations. The present results together with the report in the previous study illustrate that the pressure fluctuations are considered to drive both fluctuations of the shear layer position and lateral aerodynamic force. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要