Development and characterisation of multifunctional surface coatings for photovoltaic panels

EMERGING MATERIALS RESEARCH(2022)

引用 1|浏览0
暂无评分
摘要
In this research, the efficiency of photovoltaic (PV) panel surfaces due to environmental pollution (dust, dirt and carbon dioxide etc.) results in the loss of output power. The self-cleaning, photocatalytic, anti-reflection and antibacterial coatings developed to reduce this effect were coated on glass surfaces by the sol-gel method, and the effects of the coatings made on the efficiency of PV panels were investigated. The optical and photocatalytic properties of the coatings made were characterised by contact angle measurement and the scanning electron microscopy, respectively. The panels coated with increased light transmittance on the PV panel surface showed self-cleaning properties, an anti-reflection effect and antibacterial surface formation. Of the coatings made on the panel surfaces, photocatalytic and anti-reflection effects were provided with titanium dioxide (TiO2) and silicon dioxide (SiO2) compounds, and an antibacterial surface was obtained with the diboron trioxide (B2O3) compound. Four panels covered with titanium dioxide, silicon dioxide, diboron trioxide and TiO2 + SiO2 + B2O3 and uncoated panels were compared. The PV panels are in the external environment, and the most efficient coating determination was made with the data received from the PV system assembly to measure the extra energy produced.
更多
查看译文
关键词
antireflective, photocatalytic, photovoltaic panel, sol-gel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要