Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina

EXPERIMENTAL EYE RESEARCH(2022)

引用 0|浏览2
暂无评分
摘要
Retinal diseases are often accompanied by inflammation, vascular abnormalities, and neurodegeneration that decrease vision. Treatment with exogenous PEDF is widely shown to alleviate these conditions leading us to hypothesize that loss of function of the PEDF gene disrupts these pathways and leads to visual loss. Measurements were carried out by detailed phenotyping of PEDF null mice to assess expression of immuno-modulators, glia activation, systemic inflammation, vascular disturbances, and visual sensitivity often associated with retinal pathologies. With a deletion of the Pedf gene, there was increased expression of several immune modulators in Pedf(-/-) retinas and serum with IL-2 and GM-CSF upregulated in both. Increases in retina glia activation and macrophage infiltration, levels of serum c-reactive protein (CRP), numbers of white and red blood cells and platelets and decreased blood glucose levels were all features associated with PEDF null mice. With PEDF gene deletion, there was also a notable increase in apoptosis in early developing retinas (PN3), reduced thickness of the photoreceptor layer, swelling of the inner plexiform layer, reduced retinal sensitivity and steady-state reduced activation of Erk and Akt, two signaling pathways used by PEDF. There is a substantial body of animal data emphasizing utility of PEDF treatment in homeostatic regulation of retinal diseases, including diabetic retinopathy and age-related macular degeneration but there is little agreement or evidence on the role of endogenous PEDF in retinal diseases. Our findings strongly support the concept that a deletion of the PEDF gene makes the retina vulnerable to diseases, and argue that endogenous PEDF plays a critical role in limiting pathological events in the retina.
更多
查看译文
关键词
Vascular leakage,Inflammation,Apoptosis,Glia activation,Pedf(-/-)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要