The CBP/beta-Catenin Antagonist, ICG-001, Inhibits Tumor Metastasis via Blocking of the miR-134/ITGB1 Axis-Mediated Cell Adhesion in Nasopharyngeal Carcinoma

CANCERS(2022)

引用 2|浏览20
暂无评分
摘要
Simple Summary Metastatic nasopharyngeal carcinoma (NPC) is incurable and remains the main cause of NPC death. Our previous studies found that the CBP/beta-catenin Wnt antagonist, IGC-001, could inhibit the primary tumor formation of NPC tumor cells. Here, we further explored the anti-metastatic activity of ICG-001. We started by screening a panel of microRNAs that are related to epithelial-mesenchymal transition and cancer stem cell phenotypes; both properties can contribute to tumor metastasis. MicroRNA-134 was found to be consistently upregulated by ICG-001. The role of miR-134 in NPC is largely unknown but some studies found an association between low expression of miR-134 and poor prognosis. We examined the role of miR-134 in NPC with both in vitro and in vivo models and found that miR-134 could inhibit cancer cell adhesion, migration, and invasion. Our study provided a functional explanation for the poor prognosis observed in NPC patients with low or loss of miR-134 expression in their tumors and showed that modulation of the Wnt signaling by ICG-001 could effectively inhibit NPC metastasis via the miR-134/ITGB1 axis. Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignancy ranking as the 23rd most common cancer globally, while its incidence rate ranked the 9th in southeast Asia. Tumor metastasis is the dominant cause for treatment failure in NPC and metastatic NPC is yet incurable. The Wnt/beta-catenin signaling pathway plays an important role in many processes such as cell proliferation, differentiation, epithelial-mesenchymal transition (EMT), and self-renewal of stem cells and cancer stem cells (CSCs). Both the EMT process and CSCs are believed to play a critical role in cancer metastasis. We here investigated whether the specific CBP/beta-catenin Wnt antagonist, IGC-001, affects the metastasis of NPC cells. We found that ICG-001 treatment could reduce the adhesion capability of NPC cells to extracellular matrix and to capillary endothelial cells and reduce the tumor cell migration and invasion, events which are closely associated with distant metastasis. Through a screening of EMT and CSC-related microRNAs, it was found that miR-134 was consistently upregulated by ICG-001 treatment in NPC cells. Very few reports have mentioned the functional role of miR-134 in NPC, except that the expression was found to be downregulated in NPC. Transient transfection of miR-134 into NPC cells reduced their cell adhesion, migration, and invasion capability, but did not affect the growth of CSC-enriched tumor spheres. Subsequently, we found that the ICG-001-induced miR-134 expression resulting in downregulation of integrin beta 1 (ITGB1). Such downregulation reduced cell adhesion and migration capability, as demonstrated by siRNA-mediated knockdown of ITGB1. Direct targeting of ITGB1 by miR-134 was confirmed by the 3 '-UTR luciferase assay. Lastly, using an in vivo lung metastasis assay, we showed that ICG-001 transient overexpression of miR-134 or stable overexpression of miR-134 could significantly reduce the lung metastasis of NPC cells. Taken together, we present here evidence that modulation of Wnt/beta-catenin signaling pathway could inhibit the metastasis of NPC through the miR-134/ITGB1 axis.
更多
查看译文
关键词
ICG-001, miR-134, ITGB1, NPC, Wnt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要