Assembly of alumina particles in aqueous suspensions induced by high‐frequency AC electric field

Journal of the American Ceramic Society(2022)

引用 1|浏览0
暂无评分
摘要
The role of high-frequency alternating current (AC) electric field in the assembly of alumina particles in aqueous media was investigated. Field-particle interactions were in situ investigated for coarse and fine powder particles in very dilute suspensions. For both coarse and fine particles, AC field-induced assembly led to the formation of chains of particles within a minute, which were aligned in the field direction. However, a much finer network of particle chains evolved in fine particle suspensions. Threshold field strength for chain formation was also lower for fine particles (28 V/mm) than for coarse particles (50 V/mm), suggesting stronger interactions for finer particles. Chain length increased with both field strength and field duration. Chain formation was attributed to mutual dielectrophoretic (DEP) interaction forces. Increase in DEP forces with field strength resulted in enhanced interactions. For finer particles, decreasing interparticle distance might have favored stronger interactions. Suspension microstructure was disrupted as soon as the field was removed. However, higher field duration was associated with an improved pattern stability and retention following the field removal. Finally, particle motion was studied in deliberately applied spatially nonuniform AC field, which revealed different mechanisms of chain formation for coarse (negative-DEP) and fine (positive-DEP) particles.
更多
查看译文
关键词
AC field, alumina particles, DEP forces, particle assembly, particle size
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要