Multi Epitopes Potential on Surface SARS-CoV-2 Protein as a Covid-19 Vaccine Candidate

Research Journal of Pharmacy and Technology(2022)

引用 1|浏览0
暂无评分
摘要
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the etiology of an outbreak Covid-19. SARS-CoV-2 has a structural part consisting of spike glycoprotein, nucleoprotein N, membrane M and envelopes small membrane pentamer E. Immunoinformatic approach epitope analysis is developed to identify both weak and robust epitopes. Our study aims to identify several epitopes present in the spike glycoprotein, envelope, and membrane protein from the SARCoV-2 surface, with the help of insilico approach that highly potential as vaccine candidates. Analysis of antigeninicity was performed with the Kolaskar and Tongaonkar Antigenicity software. Epitope Mapping was analyzed using Linear Epitope Prediction Bepired. The structure of proteins with epitope regions was visualized by software Pyrex and PyMOL. Conserve analysis was performed using bio edit software. HLA mimicry was analyzed through HLAPred software. Molecular docking between the epitope with HLA I and HLA II was validated by Chimera and PyMOL software. The toxicity test for candidate vaccine peptides was carried out using ToxinPred software. Our study found seven potential epitope candidates as vaccine candidates. The seven epitopes were derived from spike proteins (5 epitopes), envelope proteins (1 epitope), and membrane proteins (1 epitope). All epitope codes are conserved and are not the same as HLA in Humans. The docking test results show a value with low affinity so that a strong bond can provide a high immune response. Toxicity tests show that all epitopes are non-toxic and safe to use as vaccine ingredients. Seven peptides from the spike, envelope, membrane protein that showed potential as vaccine candidates against Covid-19.
更多
查看译文
关键词
epitopes,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要