Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive

Synthesis and Sintering(2022)

引用 3|浏览2
暂无评分
摘要
ZrB2-TiC composites with and without nano-sized carbon black as the sintering additive were densified through spark plasma sintering at 1900 °C for 7 minutes under the applied pressure of 40 MPa. The role of carbon black in densification behavior, phase arrangement, microstructural characteristics and mechanical properties of the sintered composites were then investigated. While both of the composite samples were found to be fully sintered, the thermodynamic of the reactive sintering was also studied. Results indicated that whereas the reactive sintering process leads to complete consumption of TiC through the formation of the solid solution as the matrix in both of the composite samples, the presence of carbon black at the initial composition of the samples can result in remained carbon at the final microstructure. Besides the in-situ synthesized zirconium carbide as the major reinforcement phase, such a remained carbon can lead to significantly different mechanical behavior of the composites. Accordingly, the hardness of 21.8 and 24.3 GPa and the indentation fracture toughness of 3.3 and 4.5 MPa.m0.5 were obtained for carbon-black free and doped samples, respectively. The densification, hardening, and toughening mechanisms in both of the composite samples were finally discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要