Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction

Energy & Fuels(2022)

引用 10|浏览0
暂无评分
摘要
Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electro-conductivity and sluggish surficial water oxidation kinetics. Here, we reported a Fe2O3/CoFe-LDH heterostructure electrocatalyst through a facile hydrothermal process. By in situ decorating CoFe-LDH with Fe2O3 nanospheres, a boosted electrocatalytic OER performance is evidenced from the Fe2O3/CoFe-LDH catalysts with an overpotential of 240 mV for the benchmarked current density and a Tafel slope of 70.3 mV dec(-1). As a result of the uniquely matched energy band alignments between Fe2O3 and CoFe-LDH, a Fe2O3/CoFe-LDH interfacial type-II heterojunction is evidenced. As such, the heterojunction-induced charge transfer driving force greatly enhances the charge transfer capability of Fe2O3/CoFe-LDH, thus improving the OER performance. This work offers a novel approach toward enhancing the electron transfer kinetics of general semiconductor-based catalysts by rational heterojunction engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要