Chemoprevention of bilirubin encephalopathy with a nanoceutical agent

PEDIATRIC RESEARCH(2022)

引用 3|浏览2
暂无评分
摘要
Background Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn 3 O 4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. Method Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. Results Single oral dose (0.25 mg kg −1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant ( p < 0.0001) UCB and TSB-degradation rates were reported within 4–8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL −1 h −1 , respectively. Neural bilirubin load was decreased by 5.6 nmol g −1 ( p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. Conclusion This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. Impact None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn 3 O 4 nanoparticles (C-Mn 3 O 4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn 3 O 4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要