InAs-Al hybrid devices passing the topological gap protocol

Morteza Aghaee,Arun Akkala,Zulfi Alam, Rizwan Ali, Alejandro Alcaraz Ramirez,Mariusz Andrzejczuk,Andrey E. Antipov,Pavel Aseev, Mikhail Astafev,Bela Bauer,Jonathan Becker, Srini Boddapati,Frenk Boekhout,Jouri Bommer,Tom Bosma,Leo Bourdet,Samuel Boutin,Philippe Caroff,Lucas Casparis,Maja Cassidy, Sohail Chatoor, Anna Wulf Christensen, Noah Clay,William S. Cole,Fabiano Corsetti,Ajuan Cui,Paschalis Dalampiras,Anand Dokania,Gijs de Lange,Michiel de Moor,Juan Carlos Estrada Saldana,Saeed Fallahi,Zahra Heidarnia Fathabad,John Gamble,Geoff Gardner, Deshan Govender,Flavio Griggio, Ruben Grigoryan,Sergei Gronin,Jan Gukelberger,Esben Bork Hansen,Sebastian Heedt, Jesus Herranz Zamorano, Samantha Ho,Ulrik Laurens Holgaard,Henrik Ingerslev,Linda Johansson, Jeffrey Jones,Ray Kallaher,Farhad Karimi,Torsten Karzig,Cameron King,Maren Elisabeth Kloster,Christina Knapp, Dariusz Kocon,Jonne Koski, Pasi Kostamo,Peter Krogstrup,Mahesh Kumar,Tom Laeven,Thorvald Larsen,Kongyi Li,Tyler Lindemann, Julie Love,Roman Lutchyn,Morten Hannibal Madsen,Michael Manfra,Signe Markussen,Esteban Martinez,Robert McNeil,Elvedin Memisevic, Trevor Morgan,Andrew Mullally,Chetan Nayak, Jens Nielsen, William Hvidtfelt Padkaer Nielsen,Bas Nijholt,Anne Nurmohamed,Eoin OFarrell, Keita Otani,Sebastian Pauka,Karl Petersson,Luca Petit,Dmitry I. Pikulin, Frank Preiss,Marina Quintero-Perez,Mohana Rajpalke, Katrine Rasmussen,Davydas Razmadze, Outi Reentila,David Reilly, Richard Rouse,Ivan Sadovskyy,Lauri Sainiemi,Sydney Schreppler, Vadim Sidorkin,Amrita Singh,Shilpi Singh,Sarat Sinha,Patrick Sohr,Tomas Stankevic,Lieuwe Stek, Henri Suominen,Judith Suter,Vicky Svidenko,Sam Teicher,Mine Temuerhan,Nivetha Thiyagarajah,Raj Tholapi, Mason Thomas,Emily Toomey,Shivendra Upadhyay,Ivan Urban,Saulius Vaitiekenas,Kevin Van Hoogdalem,David Van Woerkom,Dmitrii V. Viazmitinov, Dominik Vogel,Steven Waddy,John Watson,Joseph Weston,Georg W. Winkler,Chung Kai Yang,Sean Yau, Daniel Yi, Emrah Yucelen, Alex Webster, Ruichen Zhao

arxiv(2023)

引用 21|浏览46
暂无评分
摘要
We present measurements and simulations of semiconductor-superconductor heterostructure devices that are consistent with the observation of topological superconductivity and Majorana zero modes. The devices are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are defined by electrostatic gates. These devices enable measurements of local and nonlocal transport properties and have been optimized via extensive simulations to ensure robustness against nonuniformity and disorder. Our main result is that several devices, fabricated according to the design's engineering specifications, have passed the topological gap protocol defined in Pikulin et al. (arXiv:2103.12217). This protocol is a stringent test composed of a sequence of three-terminal local and nonlocal transport measurements performed while varying the magnetic field, semiconductor electron density, and junction transparencies. Passing the protocol indicates a high probability of detection of a topological phase hosting Majorana zero modes as determined by large-scale disorder simulations. Our experimental results are consistent with a quantum phase transition into a topological superconducting phase that extends over several hundred millitesla in magnetic field and several millivolts in gate voltage, corresponding to approximately one hundred microelectronvolts in Zeeman energy and chemical potential in the semiconducting wire. These regions feature a closing and reopening of the bulk gap, with simultaneous zero-bias conductance peaks at both ends of the devices that withstand changes in the junction transparencies. The extracted maximum topological gaps in our devices are 20-60 & mu;eV. This demonstration is a prerequisite for experiments involving fusion and braiding of Majorana zero modes.
更多
查看译文
关键词
topological gap protocol,hybrid devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要