On the Interplay between CT and Singlet Exciton Emission in Organic Solar Cells with Small Driving Force and Its Impact on Voltage Loss

ADVANCED ENERGY MATERIALS(2022)

引用 10|浏览12
暂无评分
摘要
The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons.
更多
查看译文
关键词
external quantum efficiency,organic photovoltaics,ternary blends,voltage losses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要