Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols

COMMUNICATIONS EARTH & ENVIRONMENT(2022)

引用 11|浏览17
暂无评分
摘要
Black carbon aerosols absorb radiation and their absorptive strength is influenced by particle mixing structures and coating compositions. Liquid-liquid phase separation can move black carbon to organic particle coatings which affects absorptive capacity, but it is unclear which conditions favour this redistribution. Here we combine field observations, laboratory experiments, and transmission electron microscopy to demonstrate that liquid-liquid phase separation redistributes black carbon from inorganic particle cores to organic coatings under a wide range of relative humidity. We find that the ratio of organic coating thickness to black carbon size influences the redistribution. When the ratio is lower than 0.12, over 90% of black carbon is inside inorganic salt cores. However, when the ratio exceeds 0.24, most black carbon is redistributed to organic coatings, due to a change in its affinity for inorganic and organic phases. Using an optical calculation model, we estimate that black carbon redistribution reduces the absorption enhancement effect by 28–34%. We suggest that climate models assuming a core-shell particle structure probably overestimate radiative absorption of black carbon aerosols by approximately 18%.
更多
查看译文
关键词
aged black carbon aerosols,radiative absorption,liquid-liquid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要