Relative permeability as a stationary process: Energy fluctuations in immiscible displacement

PHYSICS OF FLUIDS(2022)

引用 11|浏览11
暂无评分
摘要
Relative permeability is commonly used to model immiscible fluid flow through porous materials. In this work, we derive the relative permeability relationship from conservation of energy, assuming that the system to be non-ergodic at large length scales and relying on aver-aging in both space and time to homogenize the behavior. Explicit criteria are obtained to define stationary conditions: (1) there can be no net change for extensive measures of the system state over the time averaging interval; (2) the net energy inputs into the system are zero, meaning that the net rate of work done on the system must balance with the heat removed; and (3) there is no net work performed due to the contribution of internal energy fluctuations. Results are then evaluated based on direct numerical simulation. Dynamic connectivity is observed during steady-state flow, which is quantitatively assessed based the Euler characteristic. We show that even during steady-state flow at low capillary number (Ca similar to 1 x 10(-5)), typical flow processes will explore multiple connectivity states. The residence time for each connectivity state is captured based on the time-and-space average. The distribution for energy fluctuations is shown to be multi-modal and non-Gaussian when terms are considered independently. However, we demonstrate that their sum is zero. Given an appropriate choice of the thermodynamic driving force, we show that the conventional relative permeability relationship is sufficient to model the energy dissipation in systems with complex pore-scale dynamics that routinely alter the structure of fluid connected pathways. Published under an exclusive license by AIP Publishing.
更多
查看译文
关键词
relative permeability,immiscible displacement,energy fluctuations,stationary process
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要