Understanding Instance-Level Impact of Fairness Constraints.

International Conference on Machine Learning(2022)

引用 19|浏览39
暂无评分
摘要
A variety of fairness constraints have been proposed in the literature to mitigate group-level statistical bias. Their impacts have been largely evaluated for different groups of populations corresponding to a set of sensitive attributes, such as race or gender. Nonetheless, the community has not observed sufficient explorations for how imposing fairness constraints fare at an instance level. Building on the concept of influence function, a measure that characterizes the impact of a training example on the target model and its predictive performance, this work studies the influence of training examples when fairness constraints are imposed. We find out that under certain assumptions, the influence function with respect to fairness constraints can be decomposed into a kernelized combination of training examples. One promising application of the proposed fairness influence function is to identify suspicious training examples that may cause model discrimination by ranking their influence scores. We demonstrate with extensive experiments that training on a subset of weighty data examples leads to lower fairness violations with a trade-off of accuracy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要