Weight dependence in BCM leads to adjustable synaptic competition

J. Comput. Neurosci.(2022)

引用 2|浏览6
暂无评分
摘要
Models of synaptic plasticity have been used to better understand neural development as well as learning and memory. One prominent classic model is the Bienenstock-Cooper-Munro (BCM) model that has been particularly successful in explaining plasticity of the visual cortex. Here, in an effort to include more biophysical detail in the BCM model, we incorporate 1) feedforward inhibition, and 2) the experimental observation that large synapses are relatively harder to potentiate than weak ones, while synaptic depression is proportional to the synaptic strength. These modifications change the outcome of unsupervised plasticity under the BCM model. The amount of feed-forward inhibition adds a parameter to BCM that turns out to determine the strength of competition. In the limit of strong inhibition the learning outcome is identical to standard BCM and the neuron becomes selective to one stimulus only (winner-take-all). For smaller values of inhibition, competition is weaker and the receptive fields are less selective. However, both BCM variants can yield realistic receptive fields.
更多
查看译文
关键词
Synaptic plasticity,BCM,learning rule,STDP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要