Design a flower-like magnetic graphite carbon microsphere for enhanced adsorption of 2,4-dichlorophenol

Environmental science and pollution research international(2022)

引用 0|浏览0
暂无评分
摘要
2,4-Dichlorophenol (2,4-DCP) is a hazardous chlorinated organic chemical, so its removal is an important task to protect the whole ecosystem and human health. During the material preparation, the magnetic graphitic carbon adsorbent (HFMCM) with a sparse sheet-like stacking structure was formed by interlayer assembly of nickel hydroxide nanosheets and hydrothermal glucose carbon. The conditions for optimal performance of the adsorbent are 45 °C and pH 5. The maximum adsorption capacity of HFMCM-180 for 2,4-DCP is 147.06 mg·g −1 . Adsorption behavior in accordance with Langmuir isothermal model and pseudo-second-order kinetic models. The adsorbent remains selective for 2,4-DCP in metal ion solutions. More than 75% of the adsorption capacity is maintained after five cycles of adsorption. Electrostatic interaction, hydrogen bonding, and π-π bonding play a major role in the adsorption of 2,4-DCP by HFMCM. Graphical abstract The adsorbent was glucose as the carbon source, nickel sulfate as the magnetic source, and hexamethylenetetramine as the precipitant. Its carbonization after pretreatment with different hydrothermal temperatures resulted in the synthesis of flower-like graphitic carbon spheres with magnetic properties. The interconnected pore channels on the adsorbent surface conferred large specific surface area to the material. 2,4-DCP was efficiently adsorbed by π-π stacking, hydrogen bonding, and electrostatic attraction within the pore channels with low spatial potential resistance.
更多
查看译文
关键词
Activated carbon,Nanoparticles,Structural design,Adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要