Phase-based masking for quantitative susceptibility mapping of the human brain at 9.4T

MAGNETIC RESONANCE IN MEDICINE(2022)

引用 2|浏览4
暂无评分
摘要
Purpose To develop improved tissue masks for QSM. Methods Masks including voxels at the brain surface were automatically generated from the magnitude alone (MM) or combined with test functions from the first (PG) or second (PB) derivative of the sign of the wrapped phase. Phase images at 3T and 9.4T were simulated at different TEs and used to generate a mask, P-Itoh, with between-voxel phase differences less than pi. MM, PG, and PB were compared with P-Itoh. QSM were generated from 3D multi-echo gradient-echo data acquired at 9.4T (21 subjects aged: 20-56y), and from the QSM2016 challenge 3T data using different masks, unwrapping, background removal, and dipole inversion algorithms. QSM contrast was quantified using age-based iron concentrations. Results Close to air cavities, phase wraps became denser with increasing field and echo time, yielding increased values of the test functions. Compared with P-Itoh, PB had the highest Dice coefficient, while PG had the lowest and MM the highest percentage of voxels outside P-Itoh. Artifacts observed in QSM at 9.4T with MM were mitigated by stronger background filters but yielded a reduced QSM contrast. With PB, QSM contrast was greater and artifacts diminished. Similar results were obtained with challenge data, evidencing larger effects of mask close to air cavities. Conclusion Automatic, phase-based masking founded on the second derivative of the sign of the wrapped phase, including cortical voxels at the brain surface, was able to mitigate artifacts and restore QSM contrast across cortical and subcortical brain regions.
更多
查看译文
关键词
magnetic resonance imaging, magnetic susceptibility, MRI methods, QSM, tissue masking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要