Measuring the elastic modulus of soft biomaterials using nanoindentation

Journal of the Mechanical Behavior of Biomedical Materials(2022)

引用 8|浏览4
暂无评分
摘要
The measurement of the elastic modulus of soft biomaterials via nanoindentation relies on the accurate determination of the zero-point of the tip-sample interaction on which the depth of penetration into the sample is based. Non-cantilever based nanoindentation systems were originally designed for hard materials, and therefore monitoring the zero-point contact presents a significant challenge for the characterisation of very soft biomaterials. This study investigates the ability of non-cantilever based nanoindentation to differentiate between hydrogels with elastic moduli on the order of single kiloPascals (kPa) using a bespoke soft contact protocol and low flexural stiffness of instrument. Polyethylene glycol (PEG) hydrogels were fabricated as a model system with a range of elastic moduli by varying the polymer concentration and degree of crosslinking. Elastic modulus values were calculated using the Oliver-Pharr method, Hertzian contact model, as well as a viscoelastic model to account for the time-dependent behaviour of the gels. The stiffness measurements were validated by measuring cantilever beams with the equivalent flexural stiffness to that of the PEG hydrogels being tested. The results demonstrated a high repeatability of the measurements, enabling differentiation between hydrogels with elastic moduli in the single kPa to hundreds of kPa range.
更多
查看译文
关键词
Nanoindentation,Soft materials,Hydrogel,Elastic modulus,Stiffness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要