dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury

Cell death and differentiation(2022)

引用 15|浏览9
暂无评分
摘要
Rhabdomyolysis is a severe condition that commonly leads to acute kidney injury (AKI). While double-stranded DNA (dsDNA) released from injured muscle can be involved in its pathogenesis, the exact mechanism of how dsDNA contributes to rhabdomyolysis-induced AKI (RIAKI) remains obscure. A dsDNA sensor, absent in melanoma 2 (AIM2), forms an inflammasome and induces gasdermin D (GSDMD) cleavage resulting in inflammatory cell death known as pyroptosis. In this study using a mouse model of RIAKI, we found that Aim2 -deficiency led to massive macrophage accumulation resulting in delayed functional recovery and perpetuating fibrosis in the kidney. While Aim2 -deficiency compromised RIAKI-induced kidney macrophage pyroptosis, it unexpectedly accelerated aberrant inflammation as demonstrated by CXCR3 + CD206 + macrophage accumulation and activation of TBK1-IRF3/NF-κB. Kidney macrophages with intact AIM2 underwent swift pyroptosis without IL-1β release in response to dsDNA. On the other hand, dsDNA-induced Aim2 -deficient macrophages escaped from swift pyroptotic elimination and instead engaged STING-TBK1-IRF3/NF-κB signalling, leading to aggravated inflammatory phenotypes. Collectively, these findings shed light on a hitherto unknown immunoregulatory function of macrophage pyroptosis. dsDNA-induced rapid macrophage cell death potentially serves as an anti-inflammatory program and determines the healing process of RIAKI.
更多
查看译文
关键词
Cell death and immune response,Inflammasome,Kidney diseases,Life Sciences,general,Biochemistry,Cell Biology,Stem Cells,Apoptosis,Cell Cycle Analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要