The synthesis of Au-NPs by ion implantation in the crystalline GaN and characterisation of their optical properties

Epj Web of Conferences(2022)

引用 1|浏览6
暂无评分
摘要
Nanostructured surfaces with embedded noble metal nanoparticles is an attractive way for manipulation with the optical properties of wide bandgap semiconductors applied in optoelectronics, photocatalytic processes or for Surface-Enhanced Raman spectroscopy. Ion implantation offers an effective way for nanoparticle preparation without the use of additional chemicals that offers precise control of nanoparticle depth distribution. The aim of this study is a synthesis of the gold nanoparticles in GaN by implantation of 1.85 MeV Au ions with high fluences up to 7×10 16 cm -2 and study of optical properties of Au implanted GaN. Implanted crystals were annealed at 800 °C in an ammonia atmosphere for 20 min to support Au nanoparticle creation and GaN recovery. The structure characterisation has been realized by Rutherford backscattering spectroscopy in channelling mode and it showed the formation of two separated disordered regions – the surface region and buried layer. The lower implantation fluences induce damage mainly in a buried layer; however, the increase of the Au-ion fluence leads to the increase of surface disorder as well. Further, the increase of the Au-ion fluence induces the Au dopant shift to the surface and multimodal Audepth profiles. TEM analyses confirmed the formation of Au nanoparticles in the implanted samples after annealing with sizes up to 14 nm. The increase of light absorption and modification of GaN bandgap of the Au modified GaN was deduced from the change in optical transmission spectra between 370 – 1400 nm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要