Learning general and distinctive 3D local deep descriptors for point cloud registration

IEEE Transactions on Pattern Analysis and Machine Intelligence(2022)

引用 0|浏览0
暂无评分
摘要
An effective 3D descriptor should be invariant to different geometric transformations, such as scale and rotation, robust to occlusions and clutter, and capable of generalising to different application domains. We present a simple yet effective method to learn general and distinctive 3D local descriptors that can be used to register point clouds that are captured in different domains. Point cloud patches are extracted, canonicalised with respect to their local reference frame, and encoded into scale and rotation-invariant compact descriptors by a deep neural network that is invariant to permutations of the input points. This design is what enables our descriptors to generalise across domains. We evaluate and compare our descriptors with alternative handcrafted and deep learning-based descriptors on several indoor and outdoor datasets that are reconstructed by using both RGBD sensors and laser scanners. Our descriptors outperform most recent descriptors by a large margin in terms of generalisation, and also become the state of the art in benchmarks where training and testing are performed in the same domain.
更多
查看译文
关键词
3d
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要